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Volcanic forcing degrades multiyear-to-decadal 
prediction skill in the tropical Pacific 
Xian Wu*, Stephen G. Yeager, Clara Deser, Nan Rosenbloom, Gerald A. Meehl 

Volcanic aerosol forcing can affect global climate, but its role in climate prediction remains poorly understood. 
We isolate the impact of volcanic eruptions on multiyear-to-decadal climate prediction skill by comparing two 
suites of initialized decadal hindcasts conducted with and without historical volcanic forcing. Unexpectedly, the 
inclusion of volcanic forcing in the prediction system significantly degrades the forecast skill of detrended mul-
tiyear-to-decadal sea surface temperature (SST) variability in the central-eastern tropical Pacific. The ensemble 
mean hindcasts produce multiyear-to-decadal tropical Pacific SST cooling in response to large tropical volcanic 
eruptions through thermodynamic and El Niño–Southern Oscillation (ENSO)–like dynamic processes. However, 
in observations, these eruptions coincided with tropical Pacific warming, which is well predicted by the no- 
volcano hindcasts and, hence, is likely related to internal climate variability. Improved model representation 
of volcanic response and its interaction with internal climate variability is required to advance prediction of 
tropical Pacific decadal variability and associated global impacts. 
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INTRODUCTION 
Large volcanic eruptions affect the global climate system by inject-
ing sulfur gases into the stratosphere, where they are converted into 
stratospheric sulfate aerosols that modulate atmospheric radiative 
and dynamical processes (1, 2). The volcanic influence has been de-
tected in a wide range of atmosphere (3–6), ocean (7–10), land, and 
sea ice variables (8, 9) on seasonal-to-multidecadal time scales. 
These volcanic impacts can be obscured by internal climate variabil-
ity (11) and are often challenging to isolate because of the limited 
number of large volcanic eruptions over short modern instrumental 
records (since ~1850) and the lack of measurements of stratospheric 
volcanic sulfate aerosol before the satellite era (1). For example, the 
global mean surface temperature (GMST) cooling, one of the most 
prominent climate responses to volcanic eruptions, can be masked 
by the warming effect of El Niño events or amplified by the cooling 
effect of La Niña events that happen to occur as part of the intrinsic 
El Niño–Southern Oscillation (ENSO) phenomenon (12–16). Pale-
oclimate data and climate model experiments have been widely used 
to deduce statistically significant volcanic impacts, but there are still 
many sources of uncertainty that cloud our understanding of the 
climate response to volcanoes. These include, but are not limited 
to, large disagreements among different paleoclimate reconstruc-
tions (17, 18), model disagreements and deficiencies in simulating 
volcanic responses (4, 19–22), and uncertainties in estimating the 
observed volcanic forcing (23, 24). 

Given the hypothesized strong climate forcing, volcanic erup-
tions could provide an important source of predictability for post- 
eruption climate evolution. Historical volcanic aerosol forcing has 
been incorporated into the Coupled Model Intercomparison Project 
5/6 (CMIP5/6) initialized decadal hindcasts to facilitate direct com-
parison with uninitialized historical simulations (25, 26). We note 
that, in practice, volcanic eruptions cannot be reliably predicted in 
advance, and this increases the uncertainty of real-time predictions 
and future climate projections (5, 27). To isolate the impact of 

volcanic eruptions on decadal predictions, the CMIP6 Decadal 
Climate Prediction Project protocol included an experiment to 
repeat hindcasts initialized in 1963, 1982, and 1991 without the 
aerosol forcing from the Agung, El Chichón, and Pinatubo erup-
tions, respectively (26). By comparing the predictions with and 
without volcanic forcing for these selected dates, a recent study 
(28) showed that volcanic forcing can robustly affect the predictions 
of many climate variability modes. However, relating the predicted 
volcanic response to observations is complicated by model deficien-
cies in simulating volcanic responses and/or by the presence of in-
ternal variability in nature. For example, the decadal prediction skill 
of CMIP5 models for tropical Pacific sea surface temperature (SST) 
anomalies was hypothesized to be decreased by the Pinatubo 
forcing because of the discrepancy between the multimodel mean 
volcanic response and strong internal variability in observa-
tions (29). 

Except for a few case studies (28–30), it remains largely unex-
plored and unclear how volcanic forcing interacts with internal 
climate variability to modify the prediction skill of multiyear-to- 
decadal climate variability. In the present study, we investigate the 
volcanic effect on near-term (annual-to-decadal time scale) predic-
tions by comparing the Community Earth System Model version 1 
(CESM1) Decadal Prediction Large Ensemble (DPLE) (31) with a 
parallel set that excludes historical volcanic forcing (DPLE_No-
Volc) over the period 1954–2015 (see Materials and Methods). 
This comparison allows for a comprehensive assessment of the in-
fluence of large volcanic eruptions on multiyear-to-decadal predic-
tion skill over the past 60 years, including skill dependence on lead 
time and background conditions. The ensemble prediction frame-
work offers a unique perspective for examining the realism of sim-
ulated volcanic impacts and unraveling the factors contributing to 
discrepancies between model and observations. 
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RESULTS 
Volcanic impacts on the multiyear-to-decadal prediction 
skill of CESM1 
We assess the volcanic effect on the pentadal to decadal prediction 
skill of global SST and land surface air temperature (SAT) by com-
paring the anomaly correlation coefficient (ACC) of DPLE with the 
ACC of DPLE_NoVolc at forecast years 1 to 5 (FY1–5), FY6–10, and 
FY1–10 over the period 1954–2015 (Fig. 1, A to I). Here, we focus on 
predictions of quadratically detrended surface temperature time 
series to highlight skill at predicting variations about the long- 
term background anthropogenic climate change signal. Results 
remain very similar if we use linear detrending to remove forced 

climate change (fig. S1), while removing the ensemble mean of un-
initialized simulations at each time step will also remove the volca-
nic response and is not a preferred method here (fig. S2 and 
Materials and Methods). The high ACCs for non-detrended data 
show little difference between DPLE and DPLE_NoVolc nearly ev-
erywhere, as they are dominated by the anthropogenic trend (fig. 
S3). DPLE and DPLE_NoVolc show statistically significant ACC 
differences at the 90% confidence level (Materials and Methods) 
for detrended surface temperature over many regions (Fig. 1, A to 
I). In particular, the ACC is degraded in DPLE compared to DPLE_-
NoVolc over the central tropical Pacific and along the west coast of 
Mexico by up to ~0.3 for FY1–5 (Fig. 1G), ~0.8 for FY6–10 

Fig. 1. Volcanic impact on the prediction skill of quadratically detrended multiyear-to-decadal surface temperatures. Anomaly correlation coefficient (ACC)of 
quadratically detrended annual sea surface temperature (SST) and surface air temperature (SAT) over land at FY1–5, FY6–10, and FY1–10 (from left to right columns) 
during 1955–2015 for (A to C) DPLE, (D to F) Decadal Prediction Large Ensemble (DPLE)_NoVolc [verified against the Extended Reconstruction Sea Surface Temperature 
version 5 (ERSSTv5) and Berkeley Earth Surface Temperature data], and (G to I) their difference (DPLE minus DPLE_NoVolc). The stippling indicates insignificant values at 
the 90% confidence level based on bootstrapping across both time and ensemble members (see Materials and Methods). (J) ACC of quadratically detrended central- 
eastern tropical Pacific SST [20°S to 20°N, 160°E to 80°W; the region is denoted by the black box in (I)] as a function of lead time intervals corresponding to 1- to 10-year 
averages for DPLE (blue curves), DPLE_NoVolc (orange curves), and Large Ensemble (LE) (green lines). Colored shading denotes the 10th to 90th percentile ranges of ACC 
based on 5000 bootstrapped ensemble means from randomly sampled 10-member ensembles, while the curves show ACC for the full ensembles (40, 10, and 40 
members for DPLE, DPLE_NoVolc, and LE, respectively).  
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(Fig. 1H), and ~0.6 for FY1–10 (Fig. 1I). In contrast, the ACC is im-
proved over the western tropical Pacific at all three lead times when 
volcanic forcing is included. DPLE_NoVolc shows a high skill 
(ACC > 0.5) in predicting detrended pentadal SST anomalies over 
0 to 20°N in the tropical Pacific and positive ACC in the central- 
eastern tropical Pacific (Fig. 1, D to F), a region that has stood 
out as showing low skill in CMIP5/6 decadal prediction systems 
(32, 33). In addition to the tropical Pacific, volcanic forcing signifi-
cantly affects the ACC of detrended SAT over many land regions, 
including South Asia, tropical Africa, South America, and South 
Africa (Fig. 1, G to I), but the magnitude and significance of 
these influences vary with lead time. The rest of the paper will 
focus on the volcanic influence on tropical Pacific SST predic-
tion skill. 

The sensitivities to lead time and temporal averaging are ex-
plored by comparing the ACC for detrended SST anomalies aver-
aged over the central-eastern tropical Pacific (20°S to 20°N, 160°E 
to 80°W) as a function of lead time and averaging interval (Fig. 1J). 
We focus on the central-eastern tropical Pacific to encompass the 
area that is not only significantly influenced by volcanic forcing 
(Fig. 1, G to I) but also shows positive correlation skill in the 
DPLE_NoVolc (Fig. 1, D to F). The results remain similar if we 
use a smaller region over the central tropical Pacific, which shows 
the strongest volcanic influence (fig. S4B). DPLE shows either com-
parable or significantly lower ACC than DPLE_NoVolc for all lead 
times and averaging intervals, but the magnitude of skill difference 
depends on these verification choices. For 1- and 2-year averages 
close to initialization (e.g., FY1, FY2, FY1 and FY2, and FY1–3), 
DPLE and DPLE_NoVolc show very comparable ACC scores, 
because the prediction skill for these lead times is largely controlled 
by initialization rather than by external forcing (fig. S5). For 3- to 5- 
year sliding averages, the differences between DPLE_NoVolc and 
DPLE increase with increasing lead time and become most pro-
nounced at long lead times (e.g., cf. FY1–3 and FY8–10). The 
large skill differences at FY8–10, FY7–10, and FY6–10 are largely 
due to the decreased skill in DPLE at longer lead times, which 
becomes comparable to the uninitialized CESM1 Large Ensemble 
(LE) (see Materials and Methods) (34), potentially because of a 
loss of initialization memory and stronger volcanic influence at 
longer lead times. A slight increase of ACC with lead time is 
found for DPLE_NoVolc, but this is not statistically significant 
for 5-year sliding averages (fig. S6, F to J). Such increase of predic-
tion skill with lead time in both DPLE and DPLE_NoVolc is found 
to be significant for non-detrended data in the southeast tropical 
Pacific for 5-year sliding averages (fig. S7), which is speculated to 
be related to the initialization shock and spurious ENSO conditions 
that degrade the skill at short lead times (31). Further analysis is 
needed to understand these lead time–dependent features of 
ACC. In the next two sections, we will investigate the mechanisms 
by which the volcanic forcing affects the prediction skill in the trop-
ical Pacific. 

Tropical Pacific SST response to major volcanic eruptions 
To understand how the volcanic forcing degrades prediction skill, 
we first compare the time series of detrended central-eastern trop-
ical Pacific SST anomalies in observations and forecasts for three 
different lead time windows (Fig. 2, A to C). Statistically significant 
differences between the ensemble mean time series from DPLE and 
DPLE_NoVolc tend to occur in the forecasts that overlap the strong 

volcanic eruptions, namely, Agung (1963), El Chichón (1982), and 
Pinatubo (1991) (Fig. 2D). In response to these strong volcanic 
eruptions, the detrended pentadal (FY1–5 and FY6–10) and 
decadal (FY1–10) tropical Pacific SST anomalies tend to be lower 
in DPLE than in DPLE_NoVolc and deviate more from the positive 
SST anomalies in observations. In contrast, DPLE exhibits higher 
tropical Pacific SST than DPLE_NoVolc in forecasts with start 
years of around 1970. These SST differences are not directly 
related to the two small volcanic eruptions in 1969 and 1974 but 
are, instead, artifacts of the cumulative effect of volcanic forcing 
on model climatology and trend (figs. S8 and S9). The annual cli-
matology of DPLE is cooler than DPLE_NoVolc for each forecast 
year (fig. S9A), so the drift correction artificially makes de-drifted 
SST anomalies in DPLE warmer than in DPLE_NoVolc starting 
around 1970 when there is no significant volcanic effect on the orig-
inal SSTs (fig. S8; see Supplementary Text for more details). The 
forecasts at FY6–10 and FY1–10 are influenced more by strong 
eruptions than those at FY1–5 (denoted by triangles at the 
bottom of Fig. 2, A to C) because, for example, volcanic forcing 
could happen either during FY6–10 or before FY6–10 to affect 
FY6–10 anomalies. This cumulative influence of volcanic forcing 
contributes to the more severe skill degradation for longer lead 
times (e.g., cf. FY1–5 and FY6–10) and averaging windows (e.g., 
cf. FY1–5 and FY1–10), as does the memory loss effect that increas-
es the relative influence of external forcing over initialization 
(Fig. 1J). This lead time dependence of the volcanic effect on pre-
dictions would not be evident in sensitivity experiments that target 
only a few initialization dates (26). 

Is the large post-eruption discrepancy between observations and 
DPLE caused by model error in simulating the climate response to 
volcanic forcing, underestimated predictable internal variability in 
model compared to observations, or a combination of the two? We 
compare the single observed realization of detrended central- 
eastern tropical Pacific SST anomalies during 1991–1995 following 
the Pinatubo eruption to the ensemble distributions from DPLE, 
DPLE_NoVolc, and LE (Fig. 2, E and F). The observed pentadal 
SST anomaly (0.2°C; vertical black line) falls within the tail of the 
distribution of the 40-member DPLE at FY1–5 (blue shading), while 
the 10-member DPLE_NoVolc distribution (orange shading) is 
shifted toward the observed value. The distributions of DPLE and 
DPLE_NoVolc are significantly different with high confidence 
(P < 0.01) based on z statistics (z = 7.95 for FY1–5 and z = 3.37 
for FY6–10). The comparison between DPLE and DPLE_NoVolc 
shows that volcanic forcing induces a cooling that makes the ob-
served anomaly a very unlikely outcome in DPLE. This suggests 
several possible explanations for a low DPLE skill: (i) The cooling 
response to volcanic forcing in DPLE is too strong, (ii) the predict-
able internal variability arising from initialization in DPLE is too 
weak, or (iii) the observed pentadal SST anomalies are dominated 
by unpredictable internal variability (e.g., warm anomaly in 1991– 
1995 was an unpredictable event). The relatively high overall skill 
from DPLE_NoVolc (ACC > 0.5) and better match to observations 
in the early 1990s (at both FY1–5 and FY6–10) suggest that internal 
variability related to slow oceanic processes was predictable to some 
extent. In DPLE_NoVolc, the ratio of predictable component 
(RPC) ~ 1 suggests that the predictable component of variance is 
realistic and there is no strong evidence of a signal-to-noise 
paradox (Materials and Methods). However, RPC computed from 
a 10-member ensemble (DPLE_NoVolc) may have large error bars  
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Fig. 2. Tropical Pacific sea surface temperature (SST) anomalies following major tropical volcanic eruptions. Time series of quadratically detrended SST (°C) anom-
alies (curves) over the central-eastern tropical Pacific (20°S to 20°N, 160°E to 80°W) in observations (black) and ensemble mean forecasts/simulations from Decadal Pre-
diction Large Ensemble (DPLE) (blue), DPLE_NoVolc (orange), and Large Ensemble (LE) (green) for (A) FY1–5, (B) FY6–10, and (C) FY1–10. Shading denotes the range 
(minimum to maximum) of 40, 10, and 40 members for DPLE, DPLE_NoVolc, and LE, respectively. The year value in the x axis denotes the start year of any 5- or 10-year 
averaging window [e.g., 1960 represents 5-year average spanning 1960–1964 corresponding to November 1959 initialization for FY1–5 in (A) and November 1954 ini-
tialization for FY6–10 in (B)]. The triangles at the bottom of (A) to (C) denote the forecast ensembles that coincide with any of the three volcanic eruptions starting in 1963, 
1982, and 1991. The colored dots on curves denote the ensemble mean anomalies that are significant at the 90% confidence level, and the gray blocks highlight time 
periods when the ensemble-mean difference between DPLE and DPLE_NoVolc is significant at the 90% confidence level based on bootstrapping across ensemble 
members (Materials and Methods). The standard deviation (SD) of observed SST time series is indicated at the bottom right of each panel. The anomaly correlation 
coefficient (ACC) (* denotes insignificant values), root mean square error (RMSE), SD of total variability, and ratio of predictable component (RPC) for the forecasts/sim-
ulations are indicated on the right of each panel. (D) Monthly time series of volcanic aerosol mass mixing ratios (curves) used in DPLE and LE for the global (black), 
Northern Hemisphere (NH; orange), and Southern Hemisphere (SH; purple) averages. Probability distribution functions (PDF; %) of the central-eastern tropical Pacific 
SST anomalies during 1991–1995 in individual members of DPLE (blue shading; 40 members), DPLE_NoVolc (orange shading; 10 members), and LE (green curves; 40 
members) at (E) FY1–5 and (F) FY6–10, with vertical lines denoting the ensemble mean and observed values.  
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and would likely increase with a larger ensemble (see discussion in 
Materials and Methods). The total variance (σ2

total ) of tropical Pacific 
SST anomalies is comparable between model and observations, 
while PVF (σ2

signal=σ2
total ) is smaller in DPLE than DPLE_NoVolc 

[values are not shown in Fig. 2 but can be calculated using (ACC/ 
RPC)], suggesting that volcanic forcing may suppress the signal var-
iance but exacerbate the noise in forecasts. Lower ACC scores in 
DPLE compared to DPLE_NoVolc suggests that the forced response 
to volcanic forcing in DPLE overwhelms the predictable internal 
signal. At FY6–10, both the ensemble mean and distribution of in-
dividual members of DPLE become very comparable to LE (green 
curve), which confirms the memory loss of initial conditions and is 
consistent with the ACC analysis shown in Fig. 1J. 

We next focus on the periods following the strong volcanic erup-
tions and select three pentads (1961–1965, 1982–1986, and 1991– 
1995) during which the tropical Pacific SST predictions are signifi-
cantly influenced by the major volcanic eruptions at FY1–5 
(Fig. 2A) and FY6–10 (Fig. 2B). Figure 3 shows the spatial patterns 

of global detrended pentadal surface temperature anomalies for 
these time periods in observations and forecasts. Observations 
show positive SST anomalies over the central or eastern tropical 
Pacific but negative anomalies over the western tropical Pacific for 
all three pentads (Fig. 3, A to C; note that Fig. 3D replicates Fig. 3C). 
The observed central or eastern tropical Pacific SST warming is cap-
tured by DPLE_NoVolc (Fig. 3I-L) but not by DPLE (Fig. 3, E to H) 
because of the cooling effect caused by volcanic forcing in the en-
semble mean hindcasts (Fig. 3, M to P). The western tropical Pacific 
SST cooling, on the other hand, is better reproduced when the vol-
canic forcing is included, which partly explains the increased pre-
diction skill over the western tropical Pacific in DPLE than 
DPLE_NoVolc (Fig. 1, G to I). The increased skill in DPLE over 
the western tropical Pacific is also related to the excessive westward 
extension of positive SST anomalies in DPLE_NoVolc, which is 
likely associated with the ENSO pattern bias in CESM1 and ulti-
mately caused by the mean-state equatorial Pacific cold tongue 
bias (35, 36). Despite the SST pattern bias in the western tropical 

Fig. 3. Global surface temperature anomalies following the major volcanic eruptions. Five-year average quadratically detrended global sea surface temperature 
(SST) and land surface air temperature (SAT) (°C; color shading) anomalies during (first column) 1961–1965, (second column) 1982–1986, and (third and fourth columns) 
1991–1995 in (A to D) observations; the ensemble mean forecasts of (E to H) Decadal Prediction Large Ensemble (DPLE), (I to L) DPLE_NoVolc, and (M to P) the difference 
between DPLE and DPLE_NoVolc at FY1–5 or FY6–10. The numbers at the top right corner of (E) to (L) denote the pattern correlations of DPLE or DPLE_NoVolc with the 
observations over the tropical Pacific [20°S to 20°N, 120°E to 80°W; the region is denoted by the black box in (L)]. The stippling indicates insignificant ensemble mean 
anomalies at the 90% confidence level based on bootstrapping across ensemble members (see Materials and Methods).  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Wu et al., Sci. Adv. 9, eadd9364 (2023) 12 April 2023                                                                                                                                                              5 of 11 

D
ow

nloaded from
 https://w

w
w

.science.org at N
ational O

ceanic and A
tm

ospheric A
dm

inistration H
eadquarters (M

A
IN

) on February 27, 2024



Pacific, the pattern correlations between predicted and observed 
SST anomalies over the entire tropical Pacific basin (20°S to 20°N, 
120°E to 80°W) are considerably higher in DPLE_NoVolc than 
DPLE for the El Chichón and Pinatubo eruptions (Fig. 3, E to L). 
Looking beyond the tropical Pacific, the observed negative SAT 
anomalies over South Asia and tropical Africa during these three 
pentads appear to be related to volcanic forcing and are better pre-
dicted in DPLE than DPLE_NoVolc, consistent with the ACC 
results shown in Fig. 1. However, the observed warming over the 
Amazon basin during 1961–1965 and 1991–1995 might be related 
to the El Niño–like SST warming and is thus better captured by 
DPLE_NoVolc. 

Mechanisms of volcanic effect on tropical Pacific 
predictions 
To explore the processes by which strong volcanic eruptions cause 
negative pentadal SST anomalies in the central-eastern tropical 
Pacific in DPLE relative to DPLE_NoVolc, we examine the 
monthly detrended SST evolution using a mixed-layer ocean heat 
budget to understand the ocean temperature tendencies (see Mate-
rials and Methods for analysis details). Results for Pinatubo are 
shown in Fig. 4, and those for Agung and El Chichón are shown 
in figs. S10 and S11. In observations, the SST in this region is char-
acterized by a sequence of positive anomalies during 1991–1995 that 
are highly correlated with the Niño 3.4 index (cf. Fig. 4A and fig. 
S12A), suggesting a strong association with El Niño events. The en-
semble mean differences between DPLE and DPLE_NoVolc from 
10 different start dates ranging from 1 November 1985 to 1 Novem-
ber 1994 typically show three stages of SST change (Fig. 4A) in re-
sponse to the volcanic forcing (Fig. 4B). These include (i) a weak 
negative tendency during June 1991 to December 1991, (ii) a 
weak positive tendency during January 1992 to December 1992, 
and (iii) a negative tendency during January 1993 to January 
1995. The resultant ~2-year tropical Pacific cooling response 
during 1993–mid-1995 is key to understanding the 5- or 10-year 
average differences between DPLE and DPLE_NoVolc. The 
cooling response during 1993–mid-1995 tends to be stronger in 
the forecasts with start dates before the volcanic eruption than 
those initialized during the volcanic eruptions, presumably 
because of the joint effects of the full duration of volcanic forcing 
and initial condition memory loss. 

Figure 4 (C to E) shows the ocean mixed-layer heat budget anal-
ysis composited for the six forecast ensembles initialized before the 
Pinatubo eruption (1 November 1985 through 1 November 1990) in 
the DPLE, DPLE_NoVolc, and their difference (see Materials and 
Methods). The initially stronger central-eastern tropical Pacific SST 
cooling in the DPLE relative to DPLE_NoVolc is driven by the 
surface shortwave reduction related to the volcanic forcing 
(Fig. 4C). The second phase of relative SST warming (Fig. 4D) is 
driven by the dynamical terms (� u0 ∂T

∂x , � v ∂T0
∂y , and � w ∂T0

∂z ), indica-
tive of the development of El Niño, but the warming is damped by 
thermodynamic processes (shortwave, longwave, and latent heat 
fluxes). The third phase of relative SST cooling (Fig. 4E) is driven 
by dynamical processes, suggestive of a multiyear La Niña response 
to the second warming phase. The dynamically driven cooling is 
damped by the latent heat flux, reflecting the negative evapora-
tion–SST feedback. The heat budget results for the first two stages 
are consistent with previous findings based on CESM1 experiments 
(37), but we extend it to years 2 to 3 after an eruption. The multiyear 

La Niña–related cooling following a weak El Niño–related warming 
deviates from the typical ENSO cycle simulated by CESM1 in which 
multiyear La Niña tends to follow strong El Niño (38, 39). This is 
because the shortwave reduction associated with the volcanic 
forcing weakens the El Niño SST warming but strengthens the sub-
sequent La Niña SST cooling, in contrast to the negative shortwave 
radiation–SST feedback that damps SST anomalies in a typical 
ENSO cycle (37, 40). The trigger of initial El Niño SST warming 
is linked to the development of westerly wind anomalies over the 
western equatorial Pacific during the summer of 1991, which 
deepens the thermocline depth in the eastern equatorial Pacific 
(fig. S13E). These wind anomalies appear to be related to a rapid 
SST cooling response over the Maritime Continent and equatorial 
Indian and Atlantic Oceans after the beginning of the Pinatubo 
eruption (fig. S13E). The origin of these westerly anomalies has 
also been attributed to the stronger cooling response over land 
(e.g., Maritime Continent or Africa) than ocean in previous model-
ing studies (41–43). 

The volcanic forcing induces a very similar response in forecasts 
initialized near the El Chichón eruption as in the Pinatubo case (fig. 
S11), while the response to Agung is weak and less consistent across 
forecast ensembles with different initialization dates (fig. S10), pos-
sibly because of factors such as the seasonal timing of eruption (37). 
We also tested the sensitivity of heat budget results to the choice of 
region. The Niño 3.4 region shows overall similar results as the trop-
ical central-eastern Pacific, but the first-stage cooling is very weak 
because the ocean warming driven by dynamical terms counteracts 
the cooling induced by the shortwave reduction (fig. S12). The 
central tropical Pacific (20°S to 20°N, 160°E to 140°W), where the 
skill degradation is strongest (Fig. 1, G to I), is more affected by the 
shortwave process than the central-eastern tropical Pacific and 
shows a diminished El Niño–driven warming in the second stage 
(fig. S14). These analyses show that strong volcanic forcing 
induces tropical central-eastern Pacific cooling via a robust se-
quence of thermodynamic and dynamic processes in the model. 
The discrepancy with observed ENSO variability following these 
eruptions suggests that the CESM1 response to volcanic forcing 
overwhelms the internal ENSO variability in the tropical Pacific. 

DISCUSSION 
Issues in attributing observed tropical Pacific SST 
variability to volcanic eruptions 
The degradation of the multiyear-to-decadal prediction skill of 
tropical Pacific SSTs by volcanic forcing in CESM1 raises general 
questions about the model’s ability to realistically simulate the vol-
canic effect on ENSO and tropical Pacific decadal variability. Here, 
we find that CESM1 tends to produce a consistent response to his-
torical volcanic eruptions consisting of an initially weak tropical 
Pacific cooling phase in the first 6 months after the eruption, fol-
lowed by a 1-year weak El Niño–like warming and a subsequent 
multiyear La Niña–like cooling response. In some cases, the simu-
lated volcanic response happens to amplify the observed ENSO am-
plitude [e.g., observed strong El Niño and subsequent 2-year La 
Niña during 1982–1985 (fig. S15, A and E)], while in other cases, 
it does not [e.g., observed El Niño in 1993–1994 (fig. S13, A and 
E) and observed El Niño and subsequent La Niña in 1963–1964 
(fig. S16A and E)]. The effect of strong volcanic eruptions on 
ENSO has been widely studied using observational data,  
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paleoclimate proxies, and climate models [see a recent review by 
McGregor et al. (44) and references therein). It is hard to extract 
a statistically significant ENSO response to volcanic forcing from 
short observational records, especially because several volcanic 
eruptions (e.g., El Chichón and Pinatubo) occurred after the initi-
ation of El Niño events (44). The most recent paleoclimate data re-
constructions suggest that there is no consistent ENSO response to 

volcanic forcing (45, 46). Multimodel analysis suggests that there is 
a robust increase in the probability of El Niño development in the 
year of the volcanic eruption (43), but the strength of this evidence 
depends on the fidelity of the models and the volcanic forcing 
(20, 23). 

It has been suggested that volcanic forcing can modulate Pacific 
decadal variability and associated impacts on GMST (47, 48). 

Fig. 4. Understanding how the Pinatubo eruption causes multiyear-to-decadal tropical Pacific sea surface temperature (SST) cooling in CESM1. (A) Time series of 
monthly detrended SST (°C) anomalies over the central-eastern tropical Pacific (20°S to 20°N, 160°E to 80°W) in observations (thick black curve) and the ensemble mean 
difference between Decadal Prediction Large Ensemble (DPLE) and DPLE_NoVolc (colored curves) in the forecasts from 10 initial dates [1 November 1985 to 1 November 
1994 denoted by colored dots; the solid portion of the curves indicates differences that are significant at the 90% confidence level based on bootstrapping across 
ensemble members (see Materials and Methods)]. The light blue and red shaded blocks denote the phases of negative and positive SST tendencies, respectively. (B) 
Monthly time series of volcanic aerosol mass mixing ratios for the globe (black curve), the Northern Hemisphere (NH; orange curve), and the Southern Hemisphere (SH; 
purple curve). (C to E) Ensemble mean ocean mixed-layer heat balance terms (see Materials and Methods) averaged in the same region and integrated over three stages 
(June 1991 to December 1991, January 1992 to December 1992, and January 1993 to December 1994; °C) composited for the six ensembles initialized in November 1985 
to November 1990 in DPLE (blue), DPLE_NoVolc (orange), and their difference (black).  
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However, proxy model or observation model comparisons (4, 21) 
suggest that the GMST cooling response is overestimated by some 
models even when considering the sampling issues because of El 
Niño phases (16). The CESM1 simulates tropical Pacific decadal 
cooling in the forecasts initialized in the 1980s and 1990s in re-
sponse to volcanic forcing, while the observations show decadal 
warming in these periods (Fig. 2C). Thus, both previous studies 
and ours indicate that model fidelity needs to be carefully consid-
ered when attributing observed Pacific interannual and decadal var-
iability to volcanic eruptions. 

Potential to improve tropical Pacific multiyear-to-decadal 
prediction skill 
Decadal prediction systems have long-standing issues in predicting 
Pacific SST variations (31–33, 49, 50). Here, we show that the 
CESM1 decadal prediction system without volcanic forcing exhibits 
a high prediction skill for tropical Pacific multiyear-to-decadal 
climate variability. Future research is required to determine 
whether other CMIP5/6 models might also show a high decadal pre-
diction skill in the tropical Pacific that is obscured by volcanic 
forcing. Although a full skill assessment (e.g., ACC scores) requires 
repeating computationally expensive hindcasts without volcanic 
forcing for the past several decades, it could be useful to check 
whether selected forecasts initialized before the large historical vol-
canic eruptions (26, 28) show poor performance in predicting ob-
served tropical Pacific decadal SST anomalies, similar to analysis in 
Fig. 3. The high skill of the CESM1 no-volcano forecasts suggests 
that there is latent predictability associated with internal tropical 
decadal variability. The mechanisms giving rise to this predictability 
remain unclear, but they are likely related to slow oceanic processes 
(25, 51, 52). Tropical Pacific decadal SST variations can affect 
surface temperature, hydroclimate, and marine ecosystems across 
the globe via atmospheric and oceanic teleconnections, and there-
fore, improved understanding of prediction system behavior in the 
tropical Pacific is crucial for advancing Earth system prediction on 
decadal time scales. 

MATERIALS AND METHODS 
Initialized forecasts and uninitialized simulations 
To explore the influence of volcanic forcing on multiyear-to- 
decadal predictions, we compare the CESM1 DPLE (31) with a par-
allel set of decadal forecasts that exclude historical volcanic forcing 
(DPLE_NoVolc). All forecasts use the same model version and con-
figuration used for the CESM1 LE (34) at nominal 1° horizontal res-
olutions. The DPLE consists of 40-member retrospective forecasts 
initialized on 1 November each year during 1954–2015 and integrat-
ed for 122 months. Ensemble forecasts are initialized from identical 
ocean and sea ice conditions, and ensemble spread is created by 
adding round-off level perturbations to the atmospheric tempera-
ture initial conditions. The ocean and sea ice initial conditions 
are generated by forcing the ocean and sea ice model components 
of CESM1 with historical atmospheric and surface flux fields, while 
the atmosphere and land initial conditions are obtained from the 
CESM1 LE. All forecasts are run using CMIP5 “historical” forcings 
for 1954–2005 and CMIP5 representative concentration pathway 
8.5 forcing thereafter. DPLE_NoVolc follows the DPLE protocol 
except that it excludes volcanic aerosol forcing during 1954–2005, 
and it has a smaller ensemble size of 10. Note that DPLE_NoVolc 

uses the same historical initial conditions as in DPLE, and in par-
ticular, the ocean initial conditions include the effects of volcanic 
forcing. Both systems should have identical initial condition– 
related predictability (that includes volcanic influence), and the dif-
ference between DPLE_NoVolc and DPLE should reflect differenc-
es in how volcanic aerosol forcing interacts with the model state 
during forward integration. The volcanic aerosol forcing data 
used in DPLE include the three major tropical volcanic eruptions 
(Mt. Agung in March 1963, El Chichón in April 1982, and Mt. Pi-
natubo in June 1991) and two small eruptions in the 1970s, as 
shown by the time series of globally and vertically integrated volca-
nic aerosol mass mixing ratio (Fig. 2D). The time and latitudinally 
varying volcanic forcing is based on Ammann et al. (53). We also 
compare the DPLE with the uninitialized CESM1 LE to isolate the 
role of initialization in affecting the prediction skill (31). The 
CESM1 LE is composed of 40-member historical simulations 
subject to CMIP5 forcing during 1920–2100, including the histori-
cal volcanic forcing. We examine CESM1 LE results from the period 
of 1954–2015 to be consistent with the initialized forecasts. 

Drift correlation and detrending methods 
The drifting climatology of the ensemble forecasts is calculated by 
averaging the ensemble mean forecasts across 1964–2015 for each 
lead time, for either monthly means [forecast months 1 to 122 
(FM1–122)] or annual means (FY1–10). The period 1964–2015 
was used as the baseline climatology because it is the longest tem-
poral window for which the same-size (52 years) sample exists for 
each lead time. Drift-corrected anomalies are obtained by removing 
the lead time–dependent climatology from each ensemble member. 
The anthropogenic climate change is estimated by a quadratic fit 
(21) of the ensemble mean forecast anomalies across 1954–2015 
as a function of lead time (i.e., FY1–10 or FM1–122) and is 
removed from individual drift-corrected ensemble members to 
obtain detrended anomalies. For observations and LE, the climatol-
ogy and trend are calculated over the same time periods as for the 
forecasts. We also adopted two other methods to estimate anthro-
pogenic climate change based on the lead time–dependent linear 
trend (31) and the ensemble mean of the uninitialized CESM1 LE 
(33). However, removing the ensemble mean of LE also removes the 
effect of volcanic forcing in addition to anthropogenic climate 
change, and so, this is not a preferred method in the context of 
the present analysis. 

Observational datasets and forecast verification 
The hindcasts are verified against the National Oceanic and Atmo-
spheric Administration (NOAA) Extended Reconstruction Sea 
Surface Temperature version 5 (ERSSTv5) dataset at 2° spatial res-
olution (54) for SST and the Berkeley Earth Surface Temperature 
dataset at 1° spatial resolution (55) for near SAT. The observational 
data are regridded to the model grid before verification. The predic-
tion skill is assessed using the ACC and root mean square error 
(RMSE) between the ensemble mean forecasts and observations. 
The significance of ACC or ensemble mean anomalies is tested 
using the nonparametric bootstrap method. Following Goddard 
et al. (50) and Yeager et al. (31), we tested whether an ACC or 
ACC difference is significantly different from zero using a boot-
strapped distribution of 5000 values at each spatial location or for 
area average indices by resampling (with replacement) across both 
the time and the ensemble member dimensions. Similarly, the  
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significance of ensemble mean anomalies at a given time is tested by 
resampling (with replacement) across the ensemble member di-
mension. The 5000 values are calculated on the basis of 10- 
member ensembles for all model analyses to account for the differ-
ent ensemble sizes among DPLE (40 ensemble members), DPLE_-
NoVolc (10 ensemble members), and LE (40 ensemble members). A 
positive value is significant at the 90% confidence level if its boot-
strapped distribution has fewer than 500 values that are below zero 
(P < 500/5000 = 0.1), and vice versa for a negative value. We apply 
Fisher ’s z transformations to ACC scores before calculating 
P values. 

Signal-to-noise paradox 
The predictability (quantified by the signal-to-total variance ratio) 
has been found to be higher in observation than in climate models, 
which is known as the signal-to-noise paradox (33, 56). We evaluate 
whether this is the case in DPLE and DPLE_NoVolc. The predict-
able variance fraction (PVF;PVF ¼ σ2

signal=σ2
total ) is defined as the 

relative fraction of signal (ensemble mean) variance to total variance 
(averaged across individual ensemble members). The estimation of 
the model’s signal variance (σ2

signal ) might be biased due to a finite 
ensemble, especially for the 10-member DPLE_NoVolc. SD of total 
variability (σtotal) is the square root of total variance (σ2

total ). The RPC 
(RPC ¼ ACC=

ffiffiffiffiffiffiffiffiffi
PVF
p

) quantifies the mismatch between the poten-
tially predictable component determined from the model ensemble 
spread and the predictable component of observed variability as 
quantified by ACC. We do not calculate RPC where ACC is nega-
tive, following Smith et al. (33), but note that RPC is not meaningful 
when the ACC is positive but insignificant (57). RPC is expected to 
be underestimated using a finite ensemble, because of the combined 
effects of underestimation of ACC and overestimation of σ2

signal  due 
to an insufficient noise suppression (56, 57). A 40-member DPLE 
ensemble should be sufficient to estimate an accurate RPC, but a 10- 
member DPLE_NoVolc ensemble might not be (57). For a suffi-
ciently large ensemble, RPC should be 1 when the correlation 
skill matches the square root of the predictable portion of variance 
in the model. RPC less than 1 indicates that the actual prediction 
skill is lower than what would be expected from the model’s PVF, 
while RPC greater than 1 implies that the signal-to-noise ratio is un-
derestimated in the model compared to observations. 

Ocean mixed-layer heat budget analysis 
To decompose the processes by which the volcanic forcing affects 
the tropical Pacific SST anomalies in forecasts, we conducted an 
ocean mixed-layer heat budget analysis for the monthly detrended 
ensemble mean anomalies in the DPLE, DPLE_NoVolc, and their 
difference. We calculate the heat budget at each horizontal grid 
point as an approximate balance between the monthly mean heat 
storage tendency, ocean temperature advection, and surface heat 

fluxes according to the following equation 

∂hT0i
∂t ¼ � u ∂T0

∂x

� �
þ � u0 ∂T

∂x

D E
þ � u0 ∂T0

∂x

� �
þ � v ∂T0

∂y

D E
þ � v0 ∂T

∂y

D E

þ � v0 ∂T0
∂y

D E
þ � w ∂T0

∂z

� �

þ � w0 ∂T
∂z

D E
þ � w0 ∂T0

∂z

� �
þ

Q0net
ρCpH þ R

h�i ¼ 1
H

ð0

� H
� dz 

where T is the mixed-layer temperature; u, v, and w are the resolved 
ocean currents in the zonal (x), meridional (y), and vertical (z) di-
rections, respectively; Q0net  is the net surface heat flux (sum of short-
wave, longwave, latent, and sensible heat fluxes); ρ is the ocean water 
density (1030 kg m−3); Cp is the ocean heat capacity(4000 J kg−1 K−1-

); H is the climatological mixed-layer depth thatis averaged across 
FM1 to FM122 but varies with latitude and longitude; R represents 
the residual term, including diffusion and subgrid scale terms; the 
overbar denotes the monthly drifting climatology; and the prime 
denotes the monthly drift-corrected and detrended anomaly.  

Correction (23 May 2023): Due to a production error, some variables in the x-axis of Fig. 4 (C, 
D, and E) were incorrectly formatted. The bars above the variables instead appeared to the side 
of the variables. The figure has been corrected with the correct variables in the PDF and HTML. 

Supplementary Materials 
This PDF file includes: 
Supplementary Text 
Figs. S1 to S16 

REFERENCES AND NOTES  
1. A. Robock,  Volcanic eruptions and climate. Rev. Geophys.  38,  191–219 (2000).  

2. C. Timmreck,  Modeling the climatic effects of large explosive volcanic eruptions. Wiley 
Interdiscip. Rev. Clim. Chang.  3,  545–564 (2012).  

3. D. T. Shindell, G. A. Schmidt, M. E. Mann, G. Faluvegi,  Dynamic winter climate response to 
large tropical volcanic eruptions since 1600. J. Geophys. Res.  109,  D05104 (2004).  

4. K. J. Anchukaitis, B. M. Buckley, E. R. Cook, B. I. Cook, R. D. D’Arrigo, C. M. Ammann, 
Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys. Res. 
Lett.  37,  L22703 (2010).  

5. O. H. Otterå, M. Bentsen, H. Drange, L. Suo,  External forcing as a metronome for Atlantic 
multidecadal variability. Nat. Geosci.  3,  688–694 (2010).  

6. W. Man, M. Zuo, T. Zhou, J. T. Fasullo, I. Bethke, X. Chen, L. Zou, B. Wu,  Potential influences 
of volcanic eruptions on future global land monsoon precipitation changes. Earth’s Future 
9, (2021).  

7. J. A. Church, N. J. White, J. M. Arblaster,  Significant decadal-scale impact of volcanic 
eruptions on sea level and ocean heat content. Nature  438,  74–77 (2005).  

8. G. Stenchikov, T. L. Delworth, V. Ramaswamy, R. J. Stouffer, A. Wittenberg, F. Zeng,  Volcanic 
signals in oceans. J. Geophys. Res.  114,  D16104 (2009).  

9. Y. Ding, J. A. Carton, G. A. Chepurin, G. Stenchikov, A. Robock, L. T. Sentman, J. P. Krasting, 
Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simu-
lations. J. Geophys. Res. Oceans  119,  5622–5637 (2014). 

10. J. T. Fasullo, R. Tomas, S. Stevenson, B. Otto-Bliesner, E. Brady, E. Wahl,  The amplifying 
influence of increased ocean stratification on a future year without a summer. Nat. 
Commun.  8,  1236 (2017). 

11. D. Zanchettin, O. Bothe, H. F. Graf, S. J. Lorenz, J. Luterbacher, C. Timmreck, J. H. Jungclaus, 
Background conditions influence the decadal climate response to strong volcanic erup-
tions. J. Geophys. Res. Atmos.  118,  4090–4106 (2013). 

12. A. Robock, J. Mao,  The volcanic signal in surface temperature observations. J. Clim.  8, 
1086–1103 (1995). 

13. B. D. Santer, T. M. L. Wigley, C. Doutriaux, J. S. Boyle, J. E. Hansen, P. D. Jones, G. A. Meehl, 
E. Roeckner, S. Sengupta, K. E. Taylor,  Accounting for the effects of volcanoes and ENSO in  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Wu et al., Sci. Adv. 9, eadd9364 (2023) 12 April 2023                                                                                                                                                              9 of 11 

D
ow

nloaded from
 https://w

w
w

.science.org at N
ational O

ceanic and A
tm

ospheric A
dm

inistration H
eadquarters (M

A
IN

) on February 27, 2024



comparisons of modeled and observed temperature trends. J. Geophys. Res. Atmos.  106, 
28033–28059 (2001). 

14. B. D. Santer, S. Solomon, C. Bonfils, M. D. Zelinka, J. F. Painter, F. Beltran, J. C. Fyfe, 
G. Johannesson, C. Mears, D. A. Ridley, J. Vernier, F. J. Wentz,  Observed multivariable signals 
of late 20th and early 21st century volcanic activity. Geophys. Res. Lett.  42,  500–509 (2015). 

15. D. W. J. Thompson, J. M. Wallace, P. D. Jones, J. J. Kennedy,  Identifying signatures of natural 
climate variability in time series of global-mean surface temperature: Methodology and 
insights. J. Clim.  22,  6120–6141 (2009). 

16. F. Lehner, A. P. Schurer, G. C. Hegerl, C. Deser, T. L. Frölicher,  The importance of ENSO phase 
during volcanic eruptions for detection and attribution. Geophys. Res. Lett.  43, 
2851–2858 (2016). 

17. J. B. Adams, M. E. Mann, C. M. Ammann,  Proxy evidence for an El Niño-like response to 
volcanic forcing. Nature  426,  274–278 (2003). 

18. J. Li, S.-P. Xie, E. R. Cook, M. S. Morales, D. A. Christie, N. C. Johnson, F. Chen, R. D’Arrigo, 
A. M. Fowler, X. Gou, K. Fang,  El Niño modulations over the past seven centuries. Nat. Clim. 
Chang.  3,  822–826 (2013). 

19. S. Driscoll, A. Bozzo, L. J. Gray, A. Robock, G. Stenchikov,  Coupled Model Intercomparison 
Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. 
Atmos.  117,  D17105 (2012). 

20. S. Stevenson, B. Otto-Bliesner, J. Fasullo, E. Brady,  “El Niño like” hydroclimate responses to 
last millennium volcanic eruptions. J. Clim.  29,  2907–2921 (2016). 

21. G. Liguori, S. McGregor, J. M. Arblaster, M. S. Singh, G. A. Meehl,  A joint role for forced and 
internally-driven variability in the decadal modulation of global warming. Nat. Commun. 
11,  3827 (2020). 

22. D. Zanchettin, C. Timmreck, M. Khodri, A. Schmidt, M. Toohey, M. Abe, S. Bekki, J. Cole, S.- 
W. Fang, W. Feng, G. Hegerl, B. Johnson, N. Lebas, A. N. Le Grande, G. W. Mann, L. Marshall, 
L. Rieger, A. Robock, S. Rubinetti, K. Tsigaridis, H. Weierbach,  Effects of forcing differences 
and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experi-
ment. Geosci. Model Dev.  15,  2265–2292 (2022). 

23. C. Gao, A. Robock, C. Ammann,  Volcanic forcing of climate over the past 1500 years: An 
improved ice core-based index for climate models. J. Geophys. Res. Atmos.  113, 
D23111 (2008). 

24. D. Zanchettin, C. Timmreck, M. Toohey, J. H. Jungclaus, M. Bittner, S. J. Lorenz, A. Rubino, 
Clarifying the relative role of forcing uncertainties and initial-condition unknowns in 
spreading the climate response to volcanic eruptions. Geophys. Res. Lett.  46, 
1602–1611 (2019). 

25. G. A. Meehl, L. Goddard, G. Boer, R. Burgman, G. Branstator, C. Cassou, S. Corti, 
G. Danabasoglu, F. Doblas-Reyes, E. Hawkins, A. Karspeck, M. Kimoto, A. Kumar, D. Matei, 
J. Mignot, R. Msadek, A. Navarra, H. Pohlmann, M. Rienecker, T. Rosati, E. Schneider, 
D. Smith, R. Sutton, H. Teng, G. J. van Oldenborgh, G. Vecchi, S. Yeager,  Decadal climate 
prediction: An update from the trenches. Bull. Am. Meteorol. Soc.  95,  243–267 (2014). 

26. G. J. Boer, D. M. Smith, C. Cassou, F. Doblas-Reyes, G. Danabasoglu, B. Kirtman, Y. Kushnir, 
M. Kimoto, G. A. Meehl, R. Msadek, W. A. Mueller, K. E. Taylor, F. Zwiers, M. Rixen, Y. Ruprich- 
Robert, R. Eade,  The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. 
Geosci. Model Dev.  9,  3751–3777 (2016). 

27. I. Bethke, S. Outten, O. H. Otterå, E. Hawkins, S. Wagner, M. Sigl, P. Thorne,  Potential vol-
canic impacts on future climate variability. Nat. Clim. Chang.  7,  799–805 (2017). 

28. L. Hermanson, R. Bilbao, N. Dunstone, M. Ménégoz, P. Ortega, H. Pohlmann, J. I. Robson, 
D. M. Smith, G. Strand, C. Timmreck, S. Yeager, G. Danabasoglu,  Robust multiyear climate 
impacts of volcanic eruptions in decadal prediction systems. J. Geophys. Res. Atmos.  125, 
e2019JD031739 (2020). 

29. G. A. Meehl, H. Teng, N. Maher, M. H. England,  Effects of the Mount Pinatubo eruption on 
decadal climate prediction skill of Pacific sea surface temperatures. Geophys. Res. Lett.  42, 
10840–10846 (2015). 

30. S. Illing, C. Kadow, H. Pohlmann, C. Timmreck,  Assessing the impact of a future volcanic 
eruption on decadal predictions. Earth Syst. Dynam.  9,  701–715 (2018). 

31. S. G. Yeager, G. Danabasoglu, N. A. Rosenbloom, W. Strand, S. C. Bates, G. A. Meehl, 
A. R. Karspeck, K. Lindsay, M. C. Long, H. Teng, N. S. Lovenduski,  Predicting near-term 
changes in the Earth System: A large ensemble of initialized decadal prediction simulations 
using the Community Earth System Model. Bull. Am. Meteorol. Soc.  99,  1867–1886 (2018). 

32. B. Kirtman, S. Power, A. Adedoyin, G. Boer, R. Bojariu, Near-term climate change: Projections 
and predictability, in Climate Change 2013: The Physical Science Basis, T. F. Stocker, D. Qin, 
G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley, Eds. 
(Cambridge Univ. Press, 2013), pp. 953–1028. 

33. D. M. Smith, R. Eade, A. A. Scaife, L.-P. Caron, G. Danabasoglu, T. M. Del Sole, T. Delworth, 
F. J. Doblas-Reyes, N. J. Dunstone, L. Hermanson, V. Kharin, M. Kimoto, W. J. Merryfield, 
T. Mochizuki, W. A. Müller, H. Pohlmann, S. Yeager, X. Yang,  Robust skill of decadal climate 
predictions. NPJ Clim. Atmos. Sci.  2,  13 (2019). 

34. J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M. Arblaster, S. C. Bates, 
G. Danabasoglu, J. Edwards, M. Holland, P. Kushner, J.-F. Lamarque, D. Lawrence, K. Lindsay, 
A. Middleton, E. Munoz, R. Neale, K. Oleson, L. Polvani, M. Vertenstein,  The Community 
Earth System Model (CESM) Large Ensemble Project: A community resource for studying 
climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc.  96, 
1333–1349 (2015). 

35. A. Capotondi, C. Deser, A. Phillips, Y. Okumura, S. Larson,  ENSO and Pacific decadal vari-
ability in the Community Earth System Model Version 2. J. Adv. Model. Earth Syst.  12, 
e2019MS002022 (2020). 

36. X. Wu, Y. M. Okumura, P. N. DiNezio, S. G. Yeager, C. Deser,  The equatorial Pacific cold 
tongue bias in CESM1 and its influence on ENSO forecasts. J. Clim.  35,  3261–3277 (2022). 

37. S. Stevenson, J. T. Fasullo, B. L. Otto-Bliesner, R. A. Tomas, C. Gao,  Role of eruption season in 
reconciling model and proxy responses to tropical volcanism. Proc. Natl. Acad. Sci. U.S.A. 
114,  1822–1826 (2017). 

38. P. N. DiNezio, C. Deser, Y. Okumura, A. Karspeck,  Predictability of 2-year La Niña events in a 
coupled general circulation model. Clim. Dyn.  49,  4237–4261 (2017). 

39. X. Wu, Y. M. Okumura, P. N. DiNezio,  What controls the duration of El Niño and La Niña 
events? J. Clim.  32,  5941–5965 (2019). 

40. N. Maher, S. McGregor, M. H. England, A. S. Gupta,  Effects of volcanism on tropical vari-
ability. Geophys. Res. Lett.  42,  6024–6033 (2015). 

41. M. Ohba, H. Shiogama, T. Yokohata, M. Watanabe,  Impact of strong tropical volcanic 
eruptions on ENSO simulated in a coupled GCM. J. Clim.  26,  5169–5182 (2013). 

42. E. Predybaylo, G. L. Stenchikov, A. T. Wittenberg, F. Zeng,  Impacts of a Pinatubo-size vol-
canic eruption on ENSO. J. Geophys. Res. Atmos.  122,  925–947 (2017). 

43. M. Khodri, T. Izumo, J. Vialard, S. Janicot, C. Cassou, M. Lengaigne, J. Mignot, G. Gastineau, 
E. Guilyardi, N. Lebas, A. Robock, M. J. McPhaden,  Tropical explosive volcanic eruptions can 
trigger El Niño by cooling tropical Africa. Nat. Commun.  8,  778 (2017). 

44. S. McGregor, M. Khodri, N. Maher, M. Ohba, F. S. R. Pausata, S. Stevenson, The effect of 
strong volcanic eruptions on ENSO, in El Niño Southern Oscillation in a Changing Climate, 
M. J. McPhaden, A. Santoso, W. Cai, Eds. (Wiley, 2020), pp. 267–287. 

45. S. G. Dee, K. M. Cobb, J. Emile-Geay, T. R. Ault, R. L. Edwards, H. Cheng, C. D. Charles,  No 
consistent ENSO response to volcanic forcing over the last millennium. Science  367, 
1477–1481 (2020). 

46. F. Zhu, J. Emile-Geay, K. J. Anchukaitis, G. J. Hakim, A. T. Wittenberg, M. S. Morales, 
M. Toohey, J. King,  A re-appraisal of the ENSO response to volcanism with paleoclimate 
data assimilation. Nat. Commun.  13,  747 (2022). 

47. D. M. Smith, B. B. B. Booth, N. J. Dunstone, R. Eade, L. Hermanson, G. S. Jones, A. A. Scaife, 
K. L. Sheen, V. Thompson,  Role of volcanic and anthropogenic aerosols in the recent global 
surface warming slowdown. Nat. Clim. Chang.  6,  936–940 (2016). 

48. L. Dong, T. Zhou, X. Chen,  Changes of Pacific decadal variability in the twentieth century 
driven by internal variability, greenhouse gases, and aerosols. Geophys. Res. Lett.  41, 
8570–8577 (2014). 

49. F. J. Doblas-Reyes, I. Andreu-Burillo, Y. Chikamoto, J. García-Serrano, V. Guemas, M. Kimoto, 
T. Mochizuki, L. R. L. Rodrigues, G. J. van Oldenborgh,  Initialized near-term regional climate 
change prediction. Nat. Commun.  4,  1715 (2013). 

50. L. Goddard, A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, W. Merryfield, 
C. Deser, S. J. Mason, B. P. Kirtman, R. Msadek, R. Sutton, E. Hawkins, T. Fricker, G. Hegerl, 
C. A. T. Ferro, D. B. Stephenson, G. A. Meehl, T. Stockdale, R. Burgman, A. M. Greene, 
Y. Kushnir, M. Newman, J. Carton, I. Fukumori, T. Delworth,  A verification framework for 
interannual-to-decadal predictions experiments. Clim. Dyn.  40,  245–272 (2013). 

51. Z. Liu, E. D. Lorenzo,  Mechanisms and predictability of Pacific decadal variability. Curr. Clim. 
Change Rep.  4,  128–144 (2018). 

52. S. Power, M. Lengaigne, A. Capotondi, M. Khodri, J. Vialard, B. Jebri, E. Guilyardi, 
S. McGregor, J.-S. Kug, M. Newman, M. J. McPhaden, G. Meehl, D. Smith, J. Cole, J. Emile- 
Geay, D. Vimont, A. T. Wittenberg, M. Collins, G.-I. Kim, W. Cai, Y. Okumura, C. Chung, 
K. M. Cobb, F. Delage, Y. Y. Planton, A. Levine, F. Zhu, J. Sprintall, E. D. Lorenzo, X. Zhang, J.- 
J. Luo, X. Lin, M. Balmaseda, G. Wang, B. J. Henley,  Decadal climate variability in the tropical 
Pacific: Characteristics, causes, predictability, and prospects. Science  374,  eaay9165 (2021). 

53. C. M. Ammann, G. A. Meehl, W. M. Washington, C. S. Zender,  A monthly and latitudinally 
varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett. 
30,  1657 (2003). 

54. B. Huang, P. W. Thorne, V. F. Banzon, T. Boyer, G. Chepurin, J. H. Lawrimore, M. J. Menne, 
T. M. Smith, R. S. Vose, H.-M. Zhang,  Extended Reconstructed Sea Surface Temperature, 
Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim.  30, 
8179–8205 (2017). 

55. R. Rohde, R. Muller, R. Jacobsen, S. Perlmutter, A. Rosenfeld, J. Wurtele, J. Curry, C. Wickham, 
S. Mosher,  Berkeley Earth temperature averaging process. Geoinfor. Geostat.: An overview 
1,  1–13 (2013).  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Wu et al., Sci. Adv. 9, eadd9364 (2023) 12 April 2023                                                                                                                                                            10 of 11 

D
ow

nloaded from
 https://w

w
w

.science.org at N
ational O

ceanic and A
tm

ospheric A
dm

inistration H
eadquarters (M

A
IN

) on February 27, 2024



56. A. A. Scaife, D. Smith,  A signal-to-noise paradox in climate science. NPJ Clim. Atmos. Sci.  1, 
28 (2018). 

57. K. Strommen, T. N. Palmer,  Signal and noise in regime systems: A hypothesis on the pre-
dictability of the North Atlantic Oscillation. Quart. J. R. Met. Soc.  145,  147–163 (2019). 

Acknowledgments: We thank N. Maher and the members of NCAR’s Climate Analysis Section 
for discussions on the analysis. Funding: The CESM project is supported primarily by the 
National Science Foundation (NSF). The National Center for Atmospheric Research (NCAR) is a 
major facility sponsored by the NSF under Cooperative Agreement 1852977. Portions of this 
study were supported by the Regional and Global Model Analysis (RGMA) component of the 
Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office 
of Biological and Environmental Research (BER) via NSF IA 1844590 and under award number 
DE-SC0022070 and by the Department of Commerce through the Climate Variability and 
Predictability program of NOAA OAR’s Climate Program Office under award NA20OAR4310408. 
This research used resources of the National Energy Research Scientific Computing Center 
(NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence 
Berkeley National Laboratory, operated under contract no. DE-AC02-05CH11231. X.W. is 
supported by an Advanced Study Program postdoctoral fellowship from NCAR. Author 

contributions: X.W. and S.G.Y. conceived the study. X.W. conducted the analysis, and S.G.Y. and 
C.D. contributed to the interpretation of the results. S.G.Y., N.R., and G.A.M. led the design and 
execution of the DPLE and DPLE_NoVolc experiments. X.W. wrote the manuscript with input 
from all the authors. Competing interests: The authors declare that they have no competing 
interests. Data and materials availability: The CESM1 DPLE and LE data are available through 
NCAR’s Climate Data Gateway at www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM1- 
CAM5-DP.html and www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.cesmLE.html, 
respectively. DPLE_NoVolc data are available through https://portal.nersc.gov/archive/home/c/ 
ccsm/www/CESM1-CAM5-DP-NoV. ERSSTv5 SSTs are available at https://psl.noaa.gov/data/ 
gridded/data.noaa.ersst.v5.html. Berkeley Earth near-surface air temperatures are available at  
http://berkeleyearth.org/data/. All data needed to evaluate the conclusions in the paper are 
present in the paper and/or the Supplementary Materials.  

Submitted 18 July 2022 
Accepted 15 March 2023 
Published 12 April 2023 
10.1126/sciadv.add9364   

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Wu et al., Sci. Adv. 9, eadd9364 (2023) 12 April 2023                                                                                                                                                            11 of 11 

D
ow

nloaded from
 https://w

w
w

.science.org at N
ational O

ceanic and A
tm

ospheric A
dm

inistration H
eadquarters (M

A
IN

) on February 27, 2024

http://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM1-CAM5-DP.html
http://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM1-CAM5-DP.html
http://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.cesmLE.html
https://portal.nersc.gov/archive/home/c/ccsm/www/CESM1-CAM5-DP-NoV
https://portal.nersc.gov/archive/home/c/ccsm/www/CESM1-CAM5-DP-NoV
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html
http://berkeleyearth.org/data/

	INTRODUCTION
	RESULTS
	Volcanic impacts on the multiyear-to-decadal prediction skill of CESM1
	Tropical Pacific SST response to major volcanic eruptions
	Mechanisms of volcanic effect on tropical Pacific predictions

	DISCUSSION
	Issues in attributing observed tropical Pacific SST variability to volcanic eruptions
	Potential to improve tropical Pacific multiyear-to-decadal prediction skill

	MATERIALS AND METHODS
	Initialized forecasts and uninitialized simulations
	Drift correlation and detrending methods
	Observational datasets and forecast verification
	Signal-to-noise paradox
	Ocean mixed-layer heat budget analysis

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

